510 research outputs found

    Advanced control strategies toward achieving nearly-zero energy consumption in buildings

    Get PDF
    In this paper the main concept and results of the PEBBLE Project are presented: PEBBLE is an ongoing FP7 Project aiming at the development of advanced ICT tools to support the operation of nearly-zero- and positive energy buildings. In the design and operation of such buildings a pragmatic target is maximization of the actual net energy produced (NEP) by intelligently shaping demand to perform generation-consumption matching. With the belief that maximization of the NEP for Positive-Energy Buildings is attained thru Better ControL decisions (PEBBLE), a control and optimization ICT methodology that combines model-based predictive control and cognitive-based adaptive optimization is presented. There are three essential ingredients to the PEBBLE system: a) thermal simulation models; b) sensors, actuators, and user interfaces; and c), generic control and optimization tools. The potential for energy savings using advanced control strategies is illustrated using simulation-based studies: there are significant benefits in terms of energy-performance of using advanced control strategies, compared to traditional rule-based ones. Ongoing work about demonstration and evaluation of the PEBBLE system in three real world buildings is described

    Simulation-time reduction techniques for a retrofit planning tool

    Get PDF
    The design of retrofitted energy efficient buildings is a promising option towards achieving a cost-effective improvement of the overall building sector’s energy performance. With the aim of discovering the best design for a retrofitting project in an automatic manner, a decision making (or optimization) process is usually adopted, utilizing accurate building simulation models towards evaluating the candidate retrofitting scenarios. A major factor which affects the overall computational time of such a process is the simulation execution time. Since high complexity and prohibitive simulation execution time are predominantly due to the full-scale, detailed simulation, in this work, the following simulation-time reduction methodologies are evaluated with respect to accuracy and computational effort in a test building: Hierarchical clustering; Koopman modes; and Meta-models. The simplified model that would be the outcome of these approaches, can be utilized by any optimization approach to discover the best retrofitting option

    Influence of finite quark chemical potentials on the three flavor LOFF phase of QCD

    Get PDF
    We study in the Ginzburg-Landau approximation, the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of QCD with three flavors and one plane wave, including terms of order O(1/mu). We show that the LOFF window is slightly enlarged, and actually splits into two different regions, one characterized by u-s and d-u pairings and the other with d-u pairs only.Comment: 8 pages, 3 figure

    Ginzburg-Landau approach to the three flavor LOFF phase of QCD

    Full text link
    We explore, using a Ginzburg-Landau expansion of the free energy, the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of QCD with three flavors, using the NJL four-fermion coupling to mimic gluon interactions. We find that, below the point where the QCD homogeneous superconductive phases should give way to the normal phase, Cooper condensation of the pairs u-s and d-u is possible, but in the form of the inhomogeneous LOFF pairing.Comment: 8 pages, 4 figures. Eq. (20) corrected. As a consequence figures have been modified to show only the solution with parallel total momenta of the us, ud pairs, as the other configurations are suppressed. Main conclusions of the paper are unchange
    • …
    corecore